top of page
HKU-Pasteur Research Pole_Master Logo_BlackLARGE-01.png

A New Inflammatory Activation Pathway in Blood Vessels After SARS-CoV-2 Infection

A great collaborative work from Leo Poon's team with CUHK Medicine.


Summary:

To date, the direct causative mechanism of SARS-CoV-2-induced endotheliitis remains unclear. Here, we report that human ECs barely express surface ACE2, and ECs express less intracellular ACE2 than non-ECs of the lungs. We ectopically expressed ACE2 in hESC-ECs to model SARS-CoV-2 infection. ACE2-deficient ECs are resistant to the infection but are more activated than ACE2-expressing ones. The virus directly induces endothelial activation by increasing monocyte adhesion, NO production, and enhanced phosphorylation of p38 mitogen-associated protein kinase (MAPK), NF-κB, and eNOS in ACE2-expressing and -deficient ECs. ACE2-deficient ECs respond to SARS-CoV-2 through TLR4 as treatment with its antagonist inhibits p38 MAPK/NF-κB/ interleukin-1β (IL-1β) activation after viral exposure. Genome-wide, single-cell RNA-seq analyses further confirm activation of the TLR4/MAPK14/RELA/IL-1β axis in circulating ECs of mild and severe COVID-19 patients. Circulating ECs could serve as biomarkers for indicating patients with endotheliitis. Together, our findings support a direct role for SARS-CoV-2 in mediating endothelial inflammation in an ACE2-dependent or -independent manner.




CONTACT

 

Tel:              (852) 2831 5494

Fax:             (852) 2872 5782

Email:          hku-pasteur@hku.hk

Address:      7/F, Room 705, Hong Kong Jockey Club Building

                      For Interdisciplinary Research
                      5 Sassoon Road, Pokfulam, Hong Kong SAR

HKU-Pasteur Research Pole_Master Logo_White.png
  • Twitter
  • Facebook
  • Instagram
  • LinkedIn
  • Youtube

© 2021 HKU-Pasteur Research Pole

bottom of page